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1. Executive Summary
1.1 Purpose and Scope
This guide provides comprehensive operational procedures for managing Delta Live Tables pipelines in production environments. It covers the complete pipeline lifecycle from deployment through monitoring, maintenance, and incident response, enabling operations teams to maintain reliable, efficient data processing infrastructure.
1.2 Target Audience
Platform Engineers: Managing DLT infrastructure and deployments
Site Reliability Engineers: Monitoring and incident response
Data Engineers: Pipeline maintenance and optimization
DevOps Engineers: CI/CD pipeline implementation
1.3 Key Operational Principles
	Principle
	Description

	**Observability**
	Every pipeline must have comprehensive monitoring and alerting

	**Automation**
	Manual interventions should be automated where possible

	**Reproducibility**
	All deployments must be reproducible from source control

	**Resilience**
	Pipelines must handle failures gracefully with automatic recovery

	**Cost Awareness**
	Resource usage must be monitored and optimized continuously



2. Pipeline Lifecycle Management
2.1 Pipeline States
Understanding pipeline states is essential for effective operations:
┌─────────────────────────────────────────────────────────────────────────────┐
│                        PIPELINE STATE MACHINE                                │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   ┌──────────┐     create      ┌──────────┐                                │
│   │  (none)  │ ──────────────▶ │  IDLE    │                                │
│   └──────────┘                 └────┬─────┘                                │
│                                     │                                       │
│                               start │                                       │
│                                     ▼                                       │
│   ┌──────────┐     stop       ┌──────────┐     complete    ┌──────────┐  │
│   │  IDLE    │ ◀───────────── │ RUNNING  │ ──────────────▶ │COMPLETED │  │
│   └──────────┘                └────┬─────┘                 └──────────┘  │
│        ▲                          │                                       │
│        │                    error │                                       │
│        │                          ▼                                       │
│        │       retry/fix    ┌──────────┐                                  │
│        └─────────────────── │  FAILED  │                                  │
│                             └──────────┘                                  │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
	State
	Description
	Actions Available

	**IDLE**
	Pipeline exists but not running
	Start, Delete, Update settings

	**STARTING**
	Cluster provisioning
	Wait, Cancel

	**RUNNING**
	Processing data
	Stop, Monitor

	**STOPPING**
	Graceful shutdown in progress
	Wait

	**COMPLETED**
	Triggered run finished successfully
	Start new run

	**FAILED**
	Run terminated with error
	Investigate, Retry



2.2 Pipeline Execution Modes
	Mode
	Description
	Use Case
	Resource Impact

	**Triggered**
	Run once, process all available data
	Scheduled batch processing
	Resources released after completion

	**Continuous**
	Run indefinitely, process data as it arrives
	Real-time processing
	Resources continuously allocated

	**Full Refresh**
	Recompute all tables from scratch
	Schema changes, data corrections
	Highest resource usage



2.3 Update Types
When starting a pipeline, choose the appropriate update type:
from databricks.sdk import WorkspaceClient

client = WorkspaceClient()

# Incremental update (default) - process only new data
client.pipelines.start_update(
    pipeline_id="pipeline-123",
    full_refresh=False
)

# Full refresh - recompute all tables
client.pipelines.start_update(
    pipeline_id="pipeline-123",
    full_refresh=True
)

# Refresh specific tables only
client.pipelines.start_update(
    pipeline_id="pipeline-123",
    full_refresh_selection=["silver_orders", "gold_daily_sales"]
)
3. Deployment Strategies
3.1 Environment Promotion
Implement a structured promotion path for pipeline changes:
┌─────────────────────────────────────────────────────────────────────────────┐
│                        ENVIRONMENT PROMOTION PATH                            │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   ┌───────────┐    ┌───────────┐    ┌───────────┐    ┌───────────┐        │
│   │Development│ ─▶ │   Test    │ ─▶ │  Staging  │ ─▶ │Production │        │
│   └───────────┘    └───────────┘    └───────────┘    └───────────┘        │
│                                                                              │
│   • Feature dev    • Integration    • Pre-prod       • Live workloads      │
│   • Unit tests       testing          validation    • Full monitoring      │
│   • Small data     • Data quality   • Performance   • Alerting active      │
│   • Relaxed DQ       validation       testing                              │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
3.2 Blue-Green Deployments
For zero-downtime deployments, implement blue-green strategy:
def blue_green_deploy(pipeline_config, production_pipeline_id):
    """
    Deploy new pipeline version with zero downtime.

    1. Create new pipeline (green) with updated code
    2. Run validation tests
    3. Switch consumers to green pipeline
    4. Stop and archive blue pipeline
    """
    client = WorkspaceClient()

    # Step 1: Create green pipeline
    green_pipeline = client.pipelines.create(
        name=f"{pipeline_config['name']}_green",
        **pipeline_config
    )

    # Step 2: Run green pipeline and validate
    update = client.pipelines.start_update(
        pipeline_id=green_pipeline.pipeline_id,
        full_refresh=True
    )
    client.pipelines.wait_get_update_succeeded(
        pipeline_id=green_pipeline.pipeline_id,
        update_id=update.update_id
    )

    # Step 3: Validate output data
    if validate_pipeline_output(green_pipeline.pipeline_id):
        # Step 4: Update views/consumers to point to green tables
        switch_consumers_to_green(green_pipeline.pipeline_id)

        # Step 5: Stop blue pipeline
        client.pipelines.stop(pipeline_id=production_pipeline_id)

        # Step 6: Rename pipelines
        client.pipelines.update(
            pipeline_id=production_pipeline_id,
            name=f"{pipeline_config['name']}_archived_{timestamp}"
        )
        client.pipelines.update(
            pipeline_id=green_pipeline.pipeline_id,
            name=pipeline_config['name']
        )

        return green_pipeline.pipeline_id
    else:
        # Rollback: delete green pipeline
        client.pipelines.delete(pipeline_id=green_pipeline.pipeline_id)
        raise DeploymentError("Validation failed")
3.3 Canary Deployments
For gradual rollouts with risk mitigation:
def canary_deploy(new_config, canary_percentage=10):
    """
    Deploy to a subset of data before full rollout.

    Strategy:
    1. Deploy new pipeline processing subset of data
    2. Compare quality metrics with production
    3. Gradually increase percentage
    4. Full cutover when validated
    """
    # Create canary pipeline with data filter
    canary_config = new_config.copy()
    canary_config['configuration']['data_filter'] = f"MOD(hash(id), 100) < {canary_percentage}"

    client = WorkspaceClient()
    canary_pipeline = client.pipelines.create(**canary_config)

    # Run and monitor
    client.pipelines.start_update(pipeline_id=canary_pipeline.pipeline_id)

    # Compare metrics
    canary_metrics = get_pipeline_metrics(canary_pipeline.pipeline_id)
    prod_metrics = get_pipeline_metrics(production_pipeline_id)

    if metrics_within_threshold(canary_metrics, prod_metrics):
        # Increase canary percentage
        return increase_canary_percentage(canary_pipeline, canary_percentage * 2)
    else:
        # Alert and rollback
        alert_team("Canary metrics outside threshold")
        client.pipelines.delete(pipeline_id=canary_pipeline.pipeline_id)
4. CI/CD Integration
4.1 Pipeline as Code
Store pipeline definitions in version control:
# pipeline-config.yaml
name: "${ENV}_sales_pipeline"
target: "${CATALOG}.${SCHEMA}"
continuous: false
development: false
photon: true
channel: "CURRENT"
edition: "ADVANCED"

clusters:
  - label: "default"
    autoscale:
      min_workers: "${MIN_WORKERS}"
      max_workers: "${MAX_WORKERS}"
      mode: "ENHANCED"
    spark_conf:
      spark.databricks.delta.optimizeWrite.enabled: "true"
      spark.databricks.delta.autoCompact.enabled: "true"
    custom_tags:
      Environment: "${ENV}"
      Team: "DataEngineering"
      CostCenter: "${COST_CENTER}"

libraries:
  - notebook:
      path: "/Repos/${ENV}/pipelines/sales_pipeline"

configuration:
  source_path: "${SOURCE_PATH}"
  environment: "${ENV}"
4.2 GitHub Actions Workflow
# .github/workflows/deploy-dlt-pipeline.yml
name: Deploy DLT Pipeline

on:
  push:
    branches: [main]
    paths:
      - 'pipelines/**'
  pull_request:
    branches: [main]
    paths:
      - 'pipelines/**'

env:
  DATABRICKS_HOST: ${{ secrets.DATABRICKS_HOST }}
  DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_TOKEN }}

jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3

      - name: Set up Python
        uses: actions/setup-python@v4
        with:
          python-version: '3.10'

      - name: Install dependencies
        run: |
          pip install pytest pyspark databricks-sdk

      - name: Run unit tests
        run: pytest tests/unit -v

  deploy-staging:
    needs: test
    if: github.event_name == 'push'
    runs-on: ubuntu-latest
    environment: staging
    steps:
      - uses: actions/checkout@v3

      - name: Install Databricks CLI
        run: pip install databricks-cli

      - name: Sync notebooks to staging
        run: |
          databricks repos update \
            --path /Repos/staging/pipelines \
            --branch main

      - name: Deploy staging pipeline
        run: |
          python scripts/deploy_pipeline.py \
            --config pipeline-config.yaml \
            --env staging

      - name: Run staging pipeline
        run: |
          python scripts/run_pipeline.py \
            --pipeline-id ${{ env.STAGING_PIPELINE_ID }} \
            --wait

      - name: Validate staging output
        run: |
          python scripts/validate_output.py \
            --pipeline-id ${{ env.STAGING_PIPELINE_ID }}

  deploy-production:
    needs: deploy-staging
    runs-on: ubuntu-latest
    environment: production
    steps:
      - uses: actions/checkout@v3

      - name: Deploy production pipeline
        run: |
          python scripts/deploy_pipeline.py \
            --config pipeline-config.yaml \
            --env production

      - name: Run production pipeline
        run: |
          python scripts/run_pipeline.py \
            --pipeline-id ${{ env.PROD_PIPELINE_ID }} \
            --wait
4.3 Deployment Script
# scripts/deploy_pipeline.py
import argparse
import yaml
import os
from databricks.sdk import WorkspaceClient

def load_config(config_path, env):
    """Load and interpolate configuration."""
    with open(config_path) as f:
        config = yaml.safe_load(f.read())

    # Load environment-specific variables
    env_vars = load_env_variables(env)

    # Interpolate variables
    config_str = yaml.dump(config)
    for key, value in env_vars.items():
        config_str = config_str.replace(f"${{{key}}}", str(value))

    return yaml.safe_load(config_str)


def deploy_pipeline(config, env):
    """Deploy or update DLT pipeline."""
    client = WorkspaceClient()

    # Check if pipeline exists
    pipeline_name = config['name']
    existing = None

    for pipeline in client.pipelines.list_pipelines():
        if pipeline.name == pipeline_name:
            existing = pipeline
            break

    if existing:
        # Update existing pipeline
        client.pipelines.update(
            pipeline_id=existing.pipeline_id,
            **config
        )
        print(f"Updated pipeline: {existing.pipeline_id}")
        return existing.pipeline_id
    else:
        # Create new pipeline
        result = client.pipelines.create(**config)
        print(f"Created pipeline: {result.pipeline_id}")
        return result.pipeline_id


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", required=True)
    parser.add_argument("--env", required=True)
    args = parser.parse_args()

    config = load_config(args.config, args.env)
    pipeline_id = deploy_pipeline(config, args.env)

    # Output for subsequent steps
    print(f"::set-output name=pipeline_id::{pipeline_id}")
5. Production Operations
5.1 Daily Operations Checklist
	Task
	Frequency
	Automation Level
	Owner

	Check pipeline status
	Continuous
	Automated monitoring
	System

	Review data quality metrics
	Daily
	Automated dashboard
	Data Engineer

	Verify processing latency
	Continuous
	Automated alerting
	System

	Check resource utilization
	Daily
	Automated metrics
	Platform Engineer

	Review error logs
	Daily
	Automated aggregation
	Data Engineer

	Validate output data
	Daily
	Automated tests
	System



5.2 Pipeline Health Check Script
# health_check.py
from databricks.sdk import WorkspaceClient
from datetime import datetime, timedelta

def check_pipeline_health(pipeline_id):
    """
    Comprehensive health check for DLT pipeline.
    Returns health status and recommendations.
    """
    client = WorkspaceClient()
    issues = []
    recommendations = []

    # Get pipeline info
    pipeline = client.pipelines.get(pipeline_id=pipeline_id)

    # Check 1: Pipeline state
    if pipeline.state == "FAILED":
        issues.append({
            "severity": "CRITICAL",
            "message": "Pipeline is in FAILED state",
            "action": "Investigate failure and restart"
        })

    # Check 2: Last successful run
    updates = list(client.pipelines.list_updates(pipeline_id=pipeline_id))
    if updates:
        last_success = None
        for update in updates:
            if update.state == "COMPLETED":
                last_success = update
                break

        if last_success:
            age = datetime.now() - last_success.creation_time
            if age > timedelta(hours=24):
                issues.append({
                    "severity": "WARNING",
                    "message": f"No successful run in {age.days} days",
                    "action": "Verify pipeline schedule"
                })

    # Check 3: Data quality metrics
    dq_metrics = get_data_quality_metrics(pipeline_id)
    if dq_metrics['drop_rate'] > 0.05:
        issues.append({
            "severity": "WARNING",
            "message": f"High data quality drop rate: {dq_metrics['drop_rate']:.2%}",
            "action": "Review source data quality"
        })

    # Check 4: Processing latency
    latency = get_processing_latency(pipeline_id)
    if latency > timedelta(hours=1):
        issues.append({
            "severity": "WARNING",
            "message": f"Processing latency is {latency}",
            "action": "Consider scaling up cluster"
        })

    # Check 5: Resource utilization
    utilization = get_resource_utilization(pipeline_id)
    if utilization['cpu'] > 90:
        recommendations.append("CPU consistently high - consider larger cluster")
    if utilization['memory'] > 85:
        recommendations.append("Memory pressure detected - increase executor memory")

    return {
        "pipeline_id": pipeline_id,
        "pipeline_name": pipeline.name,
        "state": pipeline.state,
        "health": "HEALTHY" if not issues else "UNHEALTHY",
        "issues": issues,
        "recommendations": recommendations,
        "checked_at": datetime.now().isoformat()
    }
5.3 Scheduling Best Practices
	Workload Type
	Scheduling Approach
	Example

	**Batch ETL**
	Cron-based triggers
	Every 6 hours

	**Near real-time**
	Continuous with micro-batches
	Always running

	**On-demand**
	Event-triggered
	On file arrival

	**Dependent**
	Orchestrator-managed
	After upstream completes



# Schedule triggered pipeline runs
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.jobs import CronSchedule

client = WorkspaceClient()

# Create job to trigger pipeline on schedule
job = client.jobs.create(
    name="sales_pipeline_trigger",
    tasks=[
        {
            "task_key": "trigger_pipeline",
            "pipeline_task": {
                "pipeline_id": "pipeline-123",
                "full_refresh": False
            }
        }
    ],
    schedule=CronSchedule(
        quartz_cron_expression="0 0 */6 * * ?",  # Every 6 hours
        timezone_id="America/New_York"
    )
)
6. Monitoring and Alerting
6.1 Key Metrics to Monitor
	Category
	Metric
	Alert Threshold
	Severity

	**Availability**
	Pipeline uptime
	< 99.5%
	Critical

	**Latency**
	Processing lag
	> 1 hour
	Warning

	**Quality**
	Expectation pass rate
	< 95%
	Warning

	**Quality**
	Drop rate
	> 5%
	Warning

	**Resources**
	CPU utilization
	> 90% sustained
	Warning

	**Resources**
	Memory pressure
	> 85%
	Warning

	**Cost**
	DBU consumption
	> budget
	Warning



6.2 Monitoring Dashboard Queries
-- Pipeline execution summary (last 24 hours)
SELECT
    date_trunc('hour', timestamp) as hour,
    COUNT(CASE WHEN details:flow_progress:status = 'COMPLETED' THEN 1 END) as successful_runs,
    COUNT(CASE WHEN details:flow_progress:status = 'FAILED' THEN 1 END) as failed_runs,
    SUM(details:flow_progress:metrics:num_output_rows) as total_rows_processed,
    AVG(details:flow_progress:metrics:execution_duration_ms) / 1000 as avg_duration_seconds
FROM event_log(TABLE(catalog.schema.pipeline_events))
WHERE timestamp > current_timestamp() - INTERVAL 24 HOURS
GROUP BY 1
ORDER BY 1 DESC;


-- Data quality trend (last 7 days)
SELECT
    date_trunc('day', timestamp) as day,
    AVG(details:flow_progress:data_quality:passed_records /
        (details:flow_progress:data_quality:passed_records +
         details:flow_progress:data_quality:failed_records)) as pass_rate,
    SUM(details:flow_progress:data_quality:dropped_records) as total_dropped
FROM event_log(TABLE(catalog.schema.silver_orders))
WHERE timestamp > current_timestamp() - INTERVAL 7 DAYS
GROUP BY 1
ORDER BY 1;


-- Processing latency by table
SELECT
    details:flow_progress:table_name as table_name,
    AVG(details:flow_progress:metrics:execution_duration_ms) / 1000 as avg_duration_sec,
    MAX(details:flow_progress:metrics:execution_duration_ms) / 1000 as max_duration_sec,
    COUNT(*) as execution_count
FROM event_log(TABLE(catalog.schema.pipeline_events))
WHERE timestamp > current_timestamp() - INTERVAL 24 HOURS
  AND event_type = 'flow_progress'
GROUP BY 1
ORDER BY 2 DESC;
6.3 Alert Configuration
# alerting.py
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.sql import AlertOptions

client = WorkspaceClient()

# Create alert for pipeline failures
failure_alert = client.alerts.create(
    name="DLT Pipeline Failure Alert",
    query_id="query-123",  # Query that returns pipeline failures
    options=AlertOptions(
        column="failure_count",
        op=">",
        value="0",
        muted=False
    ),
    rearm=300  # Re-alert after 5 minutes if still failing
)

# Create alert for high drop rate
quality_alert = client.alerts.create(
    name="DLT Data Quality Alert",
    query_id="query-456",  # Query that returns drop rates
    options=AlertOptions(
        column="drop_rate",
        op=">",
        value="0.05",  # 5%
        muted=False
    )
)
7. Incident Response
7.1 Incident Classification
	Severity
	Definition
	Response Time
	Escalation

	**P1 - Critical**
	Complete pipeline failure, data not flowing
	15 minutes
	Immediate page

	**P2 - High**
	Significant degradation, SLA at risk
	1 hour
	Team notification

	**P3 - Medium**
	Partial impact, workaround available
	4 hours
	Next business day

	**P4 - Low**
	Minor issue, no business impact
	24 hours
	Backlog



7.2 Incident Response Procedure
┌─────────────────────────────────────────────────────────────────────────────┐
│                        INCIDENT RESPONSE WORKFLOW                            │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   1. DETECT          2. TRIAGE           3. INVESTIGATE                     │
│   ┌─────────┐        ┌─────────┐        ┌─────────┐                        │
│   │ Alert   │───────▶│ Assess  │───────▶│ Root    │                        │
│   │ Fires   │        │ Impact  │        │ Cause   │                        │
│   └─────────┘        └─────────┘        └─────────┘                        │
│                                               │                             │
│                                               ▼                             │
│   6. CLOSE           5. VERIFY           4. RESOLVE                        │
│   ┌─────────┐        ┌─────────┐        ┌─────────┐                        │
│   │Document │◀───────│ Confirm │◀───────│ Apply   │                        │
│   │ & Learn │        │ Fixed   │        │ Fix     │                        │
│   └─────────┘        └─────────┘        └─────────┘                        │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
7.3 Common Failure Scenarios and Remediation
	Scenario
	Symptoms
	Root Cause
	Remediation

	**Schema drift**
	Pipeline fails on read
	Source schema changed
	Enable schema evolution or update expectations

	**OOM errors**
	Executors killed
	Data volume spike
	Scale cluster or optimize transformations

	**Checkpoint corruption**
	Pipeline won't start
	Storage issues
	Reset checkpoint, full refresh

	**Network timeout**
	Intermittent failures
	Cloud connectivity
	Retry with backoff, check VPC config

	**Permission denied**
	Access errors
	IAM/ACL changes
	Review and restore permissions



7.4 Rollback Procedure
def rollback_pipeline(pipeline_id, target_version):
    """
    Rollback pipeline to a previous known-good version.

    Steps:
    1. Stop current pipeline
    2. Restore code from version control
    3. Reset checkpoint if needed
    4. Restart pipeline with full refresh
    """
    client = WorkspaceClient()

    # Step 1: Stop pipeline
    client.pipelines.stop(pipeline_id=pipeline_id)
    wait_for_pipeline_stopped(pipeline_id)

    # Step 2: Restore code version
    client.repos.update(
        repo_id=get_repo_id(),
        branch=f"release/{target_version}"
    )

    # Step 3: Update pipeline configuration if needed
    restore_pipeline_config(pipeline_id, target_version)

    # Step 4: Restart with appropriate refresh
    client.pipelines.start_update(
        pipeline_id=pipeline_id,
        full_refresh=True  # Full refresh to ensure clean state
    )

    return wait_for_pipeline_success(pipeline_id)
8. Maintenance Procedures
8.1 Scheduled Maintenance Windows
	Maintenance Type
	Frequency
	Duration
	Impact

	**Cluster upgrades**
	Monthly
	1-2 hours
	Brief interruption

	**DBR version updates**
	Quarterly
	2-4 hours
	Requires testing

	**Full refresh**
	As needed
	Varies
	Extended processing

	**Checkpoint cleanup**
	Weekly
	Minutes
	None



8.2 DBR Version Upgrade Procedure
def upgrade_dbr_version(pipeline_id, new_version):
    """
    Safely upgrade Databricks Runtime version.

    Procedure:
    1. Test in development environment
    2. Deploy to staging with new version
    3. Run validation tests
    4. Schedule production upgrade window
    5. Upgrade production
    6. Monitor for issues
    """
    client = WorkspaceClient()

    # Get current configuration
    pipeline = client.pipelines.get(pipeline_id=pipeline_id)

    # Create test pipeline with new version
    test_config = pipeline.spec.copy()
    test_config['name'] = f"{pipeline.name}_dbr_test"
    test_config['clusters'][0]['spark_version'] = new_version
    test_config['development'] = True

    test_pipeline = client.pipelines.create(**test_config)

    try:
        # Run test pipeline
        update = client.pipelines.start_update(
            pipeline_id=test_pipeline.pipeline_id,
            full_refresh=True
        )
        result = client.pipelines.wait_get_update_succeeded(
            pipeline_id=test_pipeline.pipeline_id,
            update_id=update.update_id
        )

        if result.state == "COMPLETED":
            # Validation passed - schedule production upgrade
            return {
                "status": "ready_for_production",
                "test_pipeline_id": test_pipeline.pipeline_id,
                "new_version": new_version
            }
        else:
            return {
                "status": "failed",
                "reason": "Test pipeline did not complete successfully"
            }
    finally:
        # Cleanup test pipeline
        client.pipelines.delete(pipeline_id=test_pipeline.pipeline_id)
8.3 Checkpoint Management
def manage_checkpoints(pipeline_id):
    """
    Manage pipeline checkpoints to prevent issues.

    Tasks:
    - Monitor checkpoint size
    - Clean up old checkpoints
    - Reset corrupted checkpoints
    """
    # Get checkpoint location
    pipeline = client.pipelines.get(pipeline_id=pipeline_id)
    checkpoint_path = pipeline.spec.get('storage')

    # Check checkpoint size
    checkpoint_info = dbutils.fs.ls(checkpoint_path)
    total_size = sum(f.size for f in checkpoint_info)

    if total_size > 10 * 1024 * 1024 * 1024:  # 10 GB
        logger.warning(f"Checkpoint size is {total_size / 1024**3:.2f} GB")

    # Clean up old offset files (keep last 100)
    offset_files = sorted(
        [f for f in checkpoint_info if 'offsets' in f.path],
        key=lambda x: x.modificationTime,
        reverse=True
    )

    for f in offset_files[100:]:
        dbutils.fs.rm(f.path)
        logger.info(f"Removed old offset file: {f.path}")
9. Scaling and Capacity Planning
9.1 Scaling Indicators
	Indicator
	Threshold
	Scaling Action

	Processing latency increasing
	> 2x normal
	Scale up workers

	CPU utilization sustained high
	> 85%
	Scale up or out

	Memory pressure
	> 80%
	Larger instance type

	Queue depth growing
	Trend increasing
	Add capacity



9.2 Capacity Planning Model
def plan_capacity(pipeline_id, growth_rate=0.1, planning_horizon_months=6):
    """
    Project future capacity needs based on historical growth.
    """
    # Get historical metrics
    metrics = get_historical_metrics(pipeline_id, months=3)

    current_throughput = metrics['current_throughput']
    current_workers = metrics['current_workers']
    throughput_per_worker = current_throughput / current_workers

    projections = []
    for month in range(1, planning_horizon_months + 1):
        projected_volume = current_throughput * (1 + growth_rate) ** month
        required_workers = math.ceil(projected_volume / throughput_per_worker)
        estimated_cost = required_workers * get_worker_cost()

        projections.append({
            "month": month,
            "projected_volume": projected_volume,
            "required_workers": required_workers,
            "estimated_monthly_cost": estimated_cost
        })

    return {
        "current_state": {
            "throughput": current_throughput,
            "workers": current_workers
        },
        "projections": projections,
        "recommendations": generate_recommendations(projections)
    }
9.3 Auto-scaling Configuration
{
  "clusters": [
    {
      "label": "default",
      "autoscale": {
        "min_workers": 2,
        "max_workers": 20,
        "mode": "ENHANCED"
      },
      "node_type_id": "i3.2xlarge",
      "driver_node_type_id": "i3.2xlarge"
    }
  ]
}
	Mode
	Description
	Best For

	**LEGACY**
	Basic autoscaling
	Simple workloads

	**ENHANCED**
	Faster scale-up, better cost optimization
	Production workloads



10. Disaster Recovery
10.1 DR Strategy Overview
	Component
	RPO
	RTO
	DR Method

	Pipeline configuration
	0
	Minutes
	Git-based deployment

	Table data
	Minutes
	Hours
	Delta Lake time travel

	Checkpoints
	N/A
	Hours
	Recreate from source

	Metadata
	Minutes
	Minutes
	Unity Catalog backup



10.2 Backup Procedures
def backup_pipeline_state(pipeline_id, backup_location):
    """
    Backup critical pipeline state for disaster recovery.
    """
    client = WorkspaceClient()

    # 1. Export pipeline configuration
    pipeline = client.pipelines.get(pipeline_id=pipeline_id)
    config_path = f"{backup_location}/config/{pipeline.name}.json"

    with open(config_path, 'w') as f:
        json.dump(pipeline.spec, f, indent=2)

    # 2. Backup table metadata
    for table in get_pipeline_tables(pipeline_id):
        metadata = spark.sql(f"DESCRIBE EXTENDED {table}").toPandas()
        metadata_path = f"{backup_location}/metadata/{table.replace('.', '/')}.csv"
        metadata.to_csv(metadata_path)

    # 3. Create table snapshots (for critical tables)
    for table in get_critical_tables(pipeline_id):
        snapshot_table = f"{table}_dr_snapshot"
        spark.sql(f"CREATE TABLE {snapshot_table} DEEP CLONE {table}")

    return {
        "backup_time": datetime.now().isoformat(),
        "pipeline_id": pipeline_id,
        "backup_location": backup_location
    }
10.3 Recovery Procedures
def recover_pipeline(backup_location, target_environment):
    """
    Recover pipeline from backup.

    Steps:
    1. Deploy pipeline configuration
    2. Restore table data from snapshots or time travel
    3. Reset checkpoints
    4. Start pipeline
    """
    # 1. Load and deploy configuration
    config = load_backup_config(backup_location)
    config = adapt_config_for_environment(config, target_environment)

    client = WorkspaceClient()
    pipeline = client.pipelines.create(**config)

    # 2. Restore critical tables
    for table in config.get('critical_tables', []):
        source_table = f"{table}_dr_snapshot"
        if table_exists(source_table):
            spark.sql(f"CREATE OR REPLACE TABLE {table} DEEP CLONE {source_table}")

    # 3. Start pipeline (full refresh to rebuild non-critical tables)
    client.pipelines.start_update(
        pipeline_id=pipeline.pipeline_id,
        full_refresh=True
    )

    return pipeline.pipeline_id
11. Cost Management
11.1 Cost Monitoring
-- DBU consumption by pipeline (last 30 days)
SELECT
    usage_metadata.pipeline_id,
    SUM(usage_quantity) as total_dbus,
    COUNT(DISTINCT usage_date) as active_days,
    SUM(usage_quantity) / COUNT(DISTINCT usage_date) as avg_daily_dbus
FROM system.billing.usage
WHERE usage_date >= current_date() - INTERVAL 30 DAYS
  AND usage_metadata.pipeline_id IS NOT NULL
GROUP BY 1
ORDER BY 2 DESC;


-- Cost breakdown by table (estimated)
SELECT
    details:flow_progress:table_name as table_name,
    COUNT(*) as execution_count,
    SUM(details:flow_progress:metrics:execution_duration_ms) / 3600000 as total_hours,
    SUM(details:flow_progress:metrics:execution_duration_ms) / 3600000 * dbu_rate as estimated_cost
FROM event_log(TABLE(catalog.schema.pipeline_events))
WHERE timestamp > current_timestamp() - INTERVAL 30 DAYS
GROUP BY 1
ORDER BY 4 DESC;
11.2 Cost Optimization Strategies
	Strategy
	Potential Savings
	Implementation Effort

	Right-size clusters
	20-40%
	Medium

	Use spot instances
	50-70%
	Low

	Optimize transformations
	10-30%
	High

	Reduce full refreshes
	20-50%
	Medium

	Enable auto-termination
	10-20%
	Low



11.3 Cost Alerts
def setup_cost_alerts(pipeline_id, daily_budget, monthly_budget):
    """
    Configure cost alerts for pipeline.
    """
    # Daily budget alert
    create_alert(
        name=f"DLT Cost Alert - Daily - {pipeline_id}",
        query=f"""
            SELECT SUM(usage_quantity) * dbu_rate as daily_cost
            FROM system.billing.usage
            WHERE usage_date = current_date()
              AND usage_metadata.pipeline_id = '{pipeline_id}'
        """,
        condition=f"daily_cost > {daily_budget}",
        severity="WARNING"
    )

    # Monthly budget alert
    create_alert(
        name=f"DLT Cost Alert - Monthly - {pipeline_id}",
        query=f"""
            SELECT SUM(usage_quantity) * dbu_rate as monthly_cost
            FROM system.billing.usage
            WHERE usage_date >= date_trunc('month', current_date())
              AND usage_metadata.pipeline_id = '{pipeline_id}'
        """,
        condition=f"monthly_cost > {monthly_budget}",
        severity="CRITICAL"
    )
12. Runbooks
12.1 Runbook: Pipeline Failure Response
## Pipeline Failure Response

### Trigger
- Alert: DLT Pipeline Failure
- Severity: P1/P2

### Immediate Actions (0-15 minutes)
1. [ ] Acknowledge alert
2. [ ] Access Databricks workspace
3. [ ] Navigate to pipeline UI
4. [ ] Identify failed update
5. [ ] Review error message and logs

### Diagnosis (15-30 minutes)
1. [ ] Check event log for detailed errors
2. [ ] Identify failing table/transformation
3. [ ] Review recent code changes
4. [ ] Check source data for anomalies
5. [ ] Verify infrastructure status

### Resolution
Based on root cause:

**If schema mismatch:**
- Update source schema expectations
- Enable schema evolution if appropriate
- Restart with full refresh

**If OOM error:**
- Scale up cluster
- Optimize transformation
- Reduce parallelism

**If data quality issue:**
- Review source data
- Adjust expectations
- Implement quarantine pattern

### Verification
1. [ ] Restart pipeline
2. [ ] Monitor for 30 minutes
3. [ ] Verify data flowing to downstream
4. [ ] Update incident ticket

### Post-Incident
1. [ ] Document root cause
2. [ ] Create follow-up tickets
3. [ ] Update runbook if needed
12.2 Runbook: Full Refresh Procedure
## Full Refresh Procedure

### When to Use
- Schema changes requiring data rebuild
- Data corruption recovery
- Major business logic changes

### Pre-Requisites
1. [ ] Change approved and scheduled
2. [ ] Downstream consumers notified
3. [ ] Backup taken (if required)
4. [ ] Estimated duration communicated

### Procedure
1. [ ] Stop continuous pipeline (if running)
databricks pipelines stop --pipeline-id <id>

2. [ ] Start full refresh
databricks pipelines start --pipeline-id <id> --full-refresh

3. [ ] Monitor progress
   - Check pipeline UI
   - Watch for errors
   - Monitor resource utilization

4. [ ] Validate results
   - Row counts match expected
   - Data quality metrics acceptable
   - Downstream queries working

5. [ ] Resume normal operations
   - Switch to incremental mode
   - Verify continuous processing

### Rollback
If full refresh fails:
1. Stop the update
2. Restore from backup/time travel
3. Investigate root cause
4. Retry with fixes
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